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The interaction of an electron or an ion beam moving with velocity &c through a stationary plasma in 
the presence of a static magnetic field is investigated theoretically under the assumption that the plasma 
is cold, the intensity of the beam is very small, and that the beam, as well as the waves resulting from the 
interaction, are aligned along the direction of the magnetic field. It is well known that an electron beam 
moving with velocity exceeding the phase velocity of electromagnetic waves in a stationary plasma is 
capable of exciting such waves and these waves (circularly polarized) rotate in the same direction and at 
the same angular frequency as the gyroelectrons of the beam. It is shown in this investigation that there 
is an apparent reversal in the direction of rotation of these gyroelectrons as seen by the stationary observer. 
Consequently, the excited wave has a circular motion in the same direction as perturbed stationary ions. 
The frequency & of the excited wave satisfies the inequality \S>\ <£2», where & is the gyrofrequency of 
perturbed stationary ions. Similarly, a wave excited by an ion beam has a circular motion in the same 
direction as perturbed stationary electrons. The frequency to* of the latter wave satisfies the inequality 
|wl'| <Qe, where Qe is the gyrofrequency of perturbed stationary electrons. It is shown that an electron (ion) 
beam moving in the direction of the magnetic field can excite only a wave having negative (positive) helicity. 
The reverse situation occurs for a beam moving against the magnetic field. General relationships are formu
lated and illustrated graphically for determining the frequency and growth rate of waves which can be ex
cited by an electron or an ion beam in any magnetized cold plasma. A particular case is illustrated in which 
an incident ion beam interacts with a relative dense plasma such as occurring in thermonuclear discharges, 
ionosphere, and interstellar space. It is shown that in such cases there is an excitation of hydromagnetic waves 
for a wide range of velocities of the ion beam. 

INTRODUCTION 

THIS investigation deals with instabilities resulting 
from the interaction of a beam of charged par

ticles with plasma. These interactions are generally 
classified as electrostatic and electromagnetic. The 
electromagnetic interactions result in two oscillatory 
modes. One of these is transverse, i.e., the electric field 
intensity E is perpendicular to the wave vector k. The 
other mode is hybrid,1 i.e., the electric field intensity E 
has components which are parallel and components 
which are perpendicular to the wave vector k. In the 
absence of a static magnetic field, the transverse mode 
is stable and the hybrid mode is unstable. 

When a plasma beam system is immersed in a static 
magnetic field having induction Bo, the transverse 
mode is unstable. According to Dawson and Bernstein, 
and Bernstein and Trehan,2 the instability produced by 
an electron beam occurs in the presence of a resonance 
between the cyclotron frequency of the electrons in the 
beam and the frequency of the circularly polarized 
wave. There exists also an analogy between this plasma-
beam instability and the anomalous Doppler effect.3 

This analogy has been investigated by Zhelezniakov.4 

There is extensive literature dealing with transverse 

* Operated by Union Carbide Corporation for the U. S. Atomic 
Energy Commission. 

1 Jacob Neufeld and P. H. Doyle, Phys. Rev. 121, 654 (1961). 
2 J. Dawson and I. B. Bernstein, Paper presented at the Con

trolled Thermonuclear Conference, Washington, D. C ; TID-7558, 
360 (1958). I. B. Bernstein and K. Trehan, Nuclear Fusion 1, 3 
(1960). 

3 For a discussion on anomalous Doppler effect, see V. L. 
Ginzberg and I. M. Frank, Doklady Akad. Nauk. S.S.S.R. 56, 
583 (1947). 

4 V. V. Zhelezniakov, Izv. Vysshikh Uchebn. Zavedenii, Radiofiz. 
2, 14 (1959); 3, 57 (1960). 
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plasma-beam instabilities in the presence of a magnetic 
field. It includes contributions of Weibel,5 Harris,6 

Kovner,7 Stepanov and Kitzenko,8 Dokuchaev,9 Tzintz-
adze and Lominadze,10 Ginzburg,11 and a number of 
other investigations. 

This investigation deals with a simple formulation of 
the plasma-beam problem, and such factors as tempera
ture, close collisions, nonuniform density distribution, 
etc., are not taken into account. The plasma is cold, the 
intensity of the beam is very small, and the wave vector 
k, the beam velocity V= (te, and the magnetic induction 
Bo are assumed to be parallel one to the other. The 
term c designates the velocity of light. It is assumed 
that the beam and the stationary plasma are of uniform 
density and infinite in extent. 

In this investigation relationships are formulated for 
determining the frequency and the rate of growth of 
transverse waves which may be excited by an electron 
or an ion beam. These relationships are expressed in 
both analytical and graphical form. Some of the gen
eral results have been tabulated and classified in ac
cordance with a system introduced by Denisse and 

6 E. S. Weibel, Phys. Rev. Letters 2, 83 (1959). 
6 E. G. Harris, Plasma Phys. 2, 138 (1961). 
7 M. S. Kovner, Zh. Eksperim. i Teor. Fiz. 40, 527 (1961) 

[translation: Soviet Phys—JETP 13, 369 (1961)]. 
8 K. N. Stepanov and A. B. Kitzenko, Zh. Tekh. Fiz. 31, 167 

(1961) (translation: Soviet Phys.—Tech. Phys. 6, 120 (1961)]; 
A. B. Kitzenko and K. N. Stepanov, ibid. 31, 176 (1961) [trans
l a t i o n : ^ . 6, 127 (1961)]. 

9 V. P. Dokuchaev, Zh. Eksperim. i Teor. Fiz. 39, 413 (1961) 
[translation: Soviet Phys.—JETP 12, 294 (1961)]. 

10 N. L. Tzintzadze and D. G. Lominadze, Zh. Tekh. Fiz. 31, 
1039 (1961) [translation: Soviet Phys.—Tech. Phys. 6, 759 
(1962)]. 

11 M. A. Gintsburg, Zh. Eksperim. i Teor. Fiz. 41, 752 (1961) 
[translation: Soviet Phys.—JETP 14, 542 (1962)]; Phys. Rev. 
Letters 7, 399 (1961). 
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Delcroix.12 It has been found that an ion beam of any 
velocity within a wide velocity range incident on a 
"dense plasma" (such as the ionosphere, interstellar 
clouds, and thermonuclear plasma) excites hydromag-
netic waves. The term "hydromagnetic waves" is 
applied in this investigation to circularly polarized waves, 
whereas Alfven waves designate plane polarized waves. 
Both hydromagnetic and Alfven waves have frequency 
co«04, where 0» is the ion gyrofrequency of the station
ary plasma. These waves are propagated with Alfven 
velocity VA=(BQ2/4wnMi)mj where n is the plasma 
density and M% the mass of an ion. 

There is a definite relationship between the direction 
of the magnetic field, the direction of the beam, the 
direction of propagation, and the sense of rotation of an 
unstable circularly polarized wave. This relationship is 
described in this investigation. 

1. PASSAGE OF AN ELECTRON BEAM 
THROUGH PLASMA 

I. Dispersion Equation 

Consider a charge equilibrated system composed of 
electrons and singly charged ions. Assume that the ions 
and the fraction (l~cr) of the electrons are at rest while 
the fraction a of the electrons are moving with velocity 
v= (k in the direction of the external magnetic field B0. 
It is assumed that the beam is very weak, i.e., er<<Cl. Let 

o)i=(4^ne2/Mi)
lf2; coe= (4ime8/w)1'2, (1-1) 

where n is the density of ions, Mi is the mass of an ion, 
and e and m are the charge and mass of an electron. 
Let the term 

ai=\e\Bo/MiC (1-2) 

represent the ion gyrofrequency and the term 

Qe=\e\Bo/mc (1-3) 

represent the electron gyrofrequency. It is assumed that 
the positive linear direction is the direction of B0. 

The dispersion equation for circularly polarized trans
verse waves propagating along the external magnetic 
field Bo can be written as follows13: 

ail-py'Wiu-ckp) 
* S * W ) = F ; — = 0 , (1-4) 

(ti-ckp-Qeil-Fy2 

where, taking into account the inequality <J«1 , 

C0j2C0 C0e
2C0 

Fz~F(a>,k)^o>2-cW . (1-5) 
co+O* co—Oe 

The term co2— c2k2 in (1-5) represents the contribution 
to the dispersion equation of Maxwell's equations in 

12 J. F. Denisse and J. L. Delcroix, Tkeorie des Ondes dans les 
Plasmas (Dunod, Paris, 1961). The quantity A used by Denisse 
and Delcroix is approximately the square of the quantity A de
fined in this investigation. 

13 See, for instance, reference 2. A similar dispersion equation 
for a multibeam system was formulated by V. A. Bailey, Phys. 
Rev. 83, 439 (1951). 

vacuum. The term coi2co/(co+Or) results from the plasma 
ions, the term ue

2Q)/(co—Qc) results from the plasma 
electrons, and the term 

<r(l-/P)1^ a(«-cW)/C«-ci^-a.(l--/32)1 / 2] 

in (1-4) results from the beam. 
In expressions (1-4) and (1-5) the quantity co repre

sents the angular frequency of a field vector associated 
with a circularly polarized wave, and k is the wave 
number. Both co and k may be positive or negative. 
Thus co is positive if a field vector such as the electric 
intensity rotates clockwise when the observer is looking 
in the positive direction (i.e., in the direction of the 
magnetic field). The phase velocity of the wave is repre
sented by the quantity co/k. The sign of this quantity 
indicates the direction of propagation of the wave, i.e., 
if co/&>0, the wave is propagated in the direction of 
Bo and if oo/k <0 the wave is propagated in the direction 
opposite to that of B0. 

A circularly polarized wave has a positive or a nega
tive helicity. The term positive helicity designates a 
wave in which the electric vector rotates clockwise as 
the wave moves away from the observer. For such a 
wave designated as an H+ wave, one has co>0 and 
co/&>0 or co <0 and o)/k <0. On the other hand, for an 
H-. wave having negative helicity, one has co>0 and 
o)/k <0 or co <0 and co/&>0. Hence the sign of the wave 
number k determines the helicity of the wave. For k>0 
one has a wave of positive helicity or an H+ wave, and 
for k <0 the wave has negative helicity or an H„ wave. 
The wave having positive helicity is often designated as 
"left-handed polarized wave."14 

II. Solution of the Dispersion Equation 

L Characteristic Frequency and Rate of Growth 

Consider the dispersion equation (1-4). The term F 
in this equation is independent of the parameters of 
the beam so that the equation F==0 represents the dis
persion equation for waves in the stationary plasma. 

A comparison will be made between the solutions of 
Eq. (1-4), where F is given in (1-5). Following the 
customary procedure, one solves these equations for co 
assuming that k is real. The values of co obtained from 
F = 0 represent the frequencies of waves in a stationary 
plasma. Since the stationary plasma is transparent, the 
values of co are real and are represented as 

co = co', (1-6) 
14 It seems appropriate to identify an H+ wave with the advance 

of a right-handed screw. There is some confusion in the existing 
literature. Thus the H+ wave is sometimes designated as left-
handed polarized wave. See, for instance, J. D. Jackson, Classical 
Electrodynamics (John Wiley & Sons, Inc., New York, 1962), 
p. 206; or J. A. Stratton, Electromagnetic Theory (McGraw-Hill 
Book Company, Inc., New York, 1941), p. 280; I. B. Bernstein 
and K. Trehan, Nucl. Fusion 1, 3 (I960). The same wave is also 
designated as "right wave" or "right-handed polarized wave." 
See, for instance, V. N. Kessenikh, "Rasposlvanienie Radiovoln," 
GITTL, 1952, p. 228; or V. L. Ginzburg, Propagation of Electro
magnetic Waves in Plasma, translated by Royer and Roger 
(Gordon and Breach, New York, N. Y., 1960), p. 180. 
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where a/ is real. The presence of the beam [i.e., the 
last term in Eq. (1-4)] produces a perturbation of the 
roots of the equation F=0 . The roots of (1-4) can thus 
be expressed 

«=co ,+5/, (1-7) 
where15 

limS'=0. (1-8) 

If 5' is complex, then Im5, if positive, represents the 
growth rate of the excited wave. The value co' in (1-6) 
shall be designated as the "characteristic frequency" 
and the term Re5' as the frequency shift of the excited 
wave. 

2, Resonant and Nonresonant Waves 

In order to clarify some of the characteristic features 
of a plasma-beam instability, one may differentiate 
between waves that are "resonant" and waves that are 
"nonresonant" with the beam. The frequency of a 
resonant wave will be expressed as 

where 
««dk0+O,(l--jS2)1'2. 

(1-9) 

(1-10) 

The frequency of a nonresonant wave will be expressed 
as 

a>=W, (1-11) 
where 

W?*ckl3+tte(l-p2)112. (1-12) 

The designation "resonant" and "nonresonant" is 
based on a resonance between the cyclotron frequency 
of the electrons in the beam and the frequency of the 
wave.2 The existence of such a resonance can be ascer
tained by means of the following considerations. 

The electrons moving with the beam, when per
turbed by an external electromagnetic field, rotate in 
a plane perpendicular to the motion of the beam. The 
gyrof requency as measured by an observer moving with 
the beam can be expressed as 

O e = -
eBo(l-^Y 

(1-13) 
mc 

where f$t represents the peripheral velocity acquired by 
the electron as a result of the perturbation. Since the 
perturbation is small, one has /3*<Cl, and, therefore, it 
is assumed that 

Qe=eBQ/nic. (1-14) 

By applying Lorentz transformation to (1-13) it can 
be shown that the electron gyrofrequency as seen by a 
stationary observer has a value (Qe)st which may be 
expressed as 

(0.).t=<^+G.(l-/3a)1/a. (1-15) 

18 See, for instance, A. I. Akhiezer and la. B. Fainberg, Zhur. 
Eksp. Teoret. Fiz. 21, 1262 (1951). 

A wave is resonant with the beam if the electro
magnetic field rotates with the same angular frequency 
co as the perturbed electron. Thus, using equality 
(1-10), one has 

co=(Qe)at=to. (1-16) 

The frequency of a wave which is resonant with the 
beam is determined by the properties of the beam and 
is always expressed by a real quantity. However, if 
the beam passes through a plasma, the resonant wave 
is perturbed. The frequency of such a perturbed wave 
may be expressed in the form 

co=co+5, (1-17) 

where the term 8 represents the perturbation produced 
by the plasma. If Im5>0, expression (1-16) represents 
an "excited resonant wave." 

Similarly, the frequency of a perturbed nonresonant 
wave passing through a plasma may be expressed as 
follows: 

w=TF+5", (1-18) 

where the term 5" represents the perturbation produced 
by the plasma. 

3. Relationship between the Angular Frequency co of a 
Resonant Wave and the Linear Velocity cB of a 

Relativistic Beam 

A discussion will be given on the relationship Q>=ckj3 
+&e(l—j82)1/2 between the frequency of a resonant wave 
and the velocity of the beam. The discussion will be 
confined to the case shown in Fig. 1 which covers an 
E+ wave, i.e., k constant and positive. A similar discus
sion could be given for an E- wave, i.e., for k constant 
and negative. In the latter case the corresponding 
graph would be obtained by reflecting the curve in 
Fig. 1 about the vertical axis. The beam velocities 0, 
represented by abscissas, vary within the range from 

WAVE MOVES 
-IN THE DIRECTION 

OPPOSITE TO THAT 
OF THE BEAM 

FIG. 1. Relationship between the angular frequency w of a 
resonant wave and the linear velocity 0 of the electron beam. OB % 
**-OBi**ck; 0£ 4 =(c 2 £ 2 -W) 1 / 2 ; OAi=*ck/(<?&+Q*yi*i OA% 

=*-ne/ck; OB6=ne. 
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j3= —1 to j3= + l, and the corresponding values of co 
are plotted as ordinates. 

For a "stationary beam," i.e., when ft=0, one has 
o>=Oi36=£2e. When the beam moves in the direction of 
the magnetic field, i.e., for /3>0, the resonant frequency 
remains positive. When the direction of the beam is 
reversed, i.e., for fi <0, the resonant frequency decreases 
and for 

0=OAi=-Qjck, (1-W) 

one has «= (fl«)8t=0. Furthermore, for 

(1-20) 

the quantity a> is negative. 
It will be shown subsequently that an electron beam 

may excite an H+ or an H- wave only if the following 
two conditions are satisfied: (1) the wave is resonant 
with the beam, and (2) the characteristic frequency of 
the wave is negative. Therefore, negative frequencies 
are of primary interest in this investigation. It can be 
seen from Fig. 1 that in the regions in which the in
stability may occur, i.e., for w<0, the resonant H+ 

wave moves in the same direction as the beam. It can 
also be shown that for k<0 in the region for which 
to <0 the resonant H- wave moves in the same direction 
as the beam. 

4. Subluminous and Superluminous Velocities1* 

The phase velocity of a resonant wave is represented 
by a quantity 

7p h=«/A. (1-21) 

Consider an expression R representing the ratio of 
the velocity cff of the beam to the phase velocity VPh 
of a wave resonant with the beam. One has 

R=cp/Vph=ckp/S>. 

Using (1-15) and (1-16), one obtains 

Q.(i-0»)1/2 

R=l —. 

(1-22) 

(1-23) 

Expression (1-23) represents the relationship between 
R and w for a fixed value of /?. This relationship is 
illustrated graphically in Fig. 2. [The scales in all 
figures except Figs. 6, 7, 13(a), 13(b), and 14 are con
siderably distorted in order to show the qualitative 
features of the graphs.] 

Consider separately in the above representation posi
tive frequencies (w>0) and negative frequencies (w <0). 

16 Some time ago it was found expedient to introduce into the 
scientific language such terms as "subsonic" and "supersonic" 
velocities in order to designate velocities which are, respectively, 
lower and higher than the velocities of sound. There appears to 
be a need for a similar terminology to designate velocities that are 
respectively lower and higher than the velocity of an electro
magnetic wave moving in the same direction as the wave in a 
given medium. It is hoped that the suggested terms "subluminous 
velocities" and "superluminous velocities" will be accepted by 
others. 

FIG. 2. Relationship between the beam velocity c(3 and the 
phase velocity (VPh) of a wave resonant with the beam. 
OBx = [ a + ( l - / 8 « ) ^ ] / a ; OB2=l. 

For values of a> satisfying the inequality 6o>Qe, one 
obtains from (1-23) 

O<R=c0/Vph<l. (1-24) 

Consequently, the velocity of the beam is "sub-
luminous." The beam moves in the same direction as 
the wave, and its velocity is lower than that of the wave. 

For frequencies satisfying the inequality 0<w<Oe, 
one obtains from (1-23) 

R=c(3/Vph<0. (1-25) 

Consequently, the beam moves in the direction opposite 
to that of the wave. 

Of particular interest is the case for which w is nega
tive since it is only in this case that an instability may 
occur. For w<0 one has 

R=cp/Vph>l. (1-26) 

Consequently, the velocity of the beam is "super-
luminous." The beam moves in the same direction as 
the wave and its velocity is higher than that of the 
wave. 

5. "Normal" and "Anomalous" Angular Velocities 

Consider a stationary plasma immersed in a static 
magnetic field and perturbed by an incident electro
magnetic wave. The electrons and ions which were 
initially stationary acquire, as a result of the perturba
tion, circular motions in the plane perpendicular to B0. 
If the magnetic field is directed away from the observer, 
then the electrons turn clockwise with the angular fre
quency 0e, and the ions turn counterclockwise with the 
angular frequency Ot.

17 These rotational velocities are 
designated as "normal." Thus Fig. 3(a) shows the 
"normal" circular motion of a perturbed electron and a 

17 See, for instance, H. Alfven, Cosmical Electrodynamics 
(Clarendon Press, Oxford, 1953). 
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perturbed ion. This figure also shows the circular mo
tion of a wave in resonance with the perturbed electron. 
Such a wave may be either an E+ wave propagating 
away from the observer or an #_ wave propagating 
towards the observer. It is assumed in Fig. 3(a) and 
also in Figs. 3(b) and 3(c) that the resonant wave is 
an H+ wave. The discussion will be limited to this case. 

Assume that an electron beam aligned along the 
magnetic field moves with a velocity fie and consider 
the circular motion which an electron in such a beam 
acquires as a result of perturbation. If a beam moves 
with subluminous velocity, the rotational velocity of 
perturbed electrons in the beam is normal. However, 
when the beam is superluminous, there is a reversal in 
the rotational velocity in the framework of a stationary 
observer. Such a reversal may be observed by comparing 
Figs. 3(b) and 3(c). Figure 3(b) illustrates the case for 
which fi satisfies the inequality 

-2e/ck<fi<l, (1-27) 

and Fig. 3(c) illustrates the case for which fi satisfies 
the inequality 

-1<0<-Qjck. (1-28) 

Consider now Fig. 3(b). In the range 0<fi<l the 
beam moves in the direction of the magnetic field with 
subluminous velocity. In the range for which — tie/ck 
<fi<0, the direction of the beam is opposite to that 
of the wave. This direction is also opposite to that of 
the magnetic field. Both the perturbed electron and the 
wave have "normal" clockwise motions similar to those 
shown in Fig. 3(a). 

Consider now Fig. 3(c). For values of fi satisfying 
inequality (1-28) the beam moves with superluminous 
velocity in the direction which is opposite to that of 
the magnetic field. One obtains here an apparently 
paradoxical situation in which the angular velocity of 
an electron moving with the beam as seen by the sta
tionary observer is reversed. This "anomalous rota
tional velocity" is shown in Fig. 3(c). Both the per
turbed electron and the electromagnetic field, as seen by 
the stationary observer, rotate counterclockwise. There
fore, the H+ wave rotates in the same direction as the 
stationary ion and moves in the upward direction 
against the magnetic field. 

Cl_cii I n u l l I W H n b « w n n n i \ ri , o o o RESONANT ( H J WAVE 
6J) MAGNETIC INDUCTION B0 

ELECTRON RESONANT(H.) WAVE o o 
(a) 

(b) 

RESONANT (HJWAVE o o 

(X) DIRECTION OF PROPAGATION 
OF THE ( H,) WAVE 

® MAGNETIC INDUCTION B„ 

(X) DIRECTION OF PROPAGATION 
OF THE ( H,) WAVE '" 

(X) MAGNETIC INDUCTION B0 

0 VELOCITY OF THE 
UNPERTURBED ELECTRON 

Q WRECTION OF PROPAGATION 
OF THE (HJ WAVE 

(O 

FIG. 3. (a) Circular motion of a perturbed electron, perturbed 
ion, and of a resonant H+ wave. In the absence of the perturba
tion, the electron and the ion are at rest. Both the magnetic 
induction B0 and the H+ wave are directed downward through 
the paper, (b) Circular motion of a perturbed electron and a 
resonant H+ wave. In the absence of the perturbation the elec
tron moves with subluminous velocity. Both the magnetic induc
tion Bo and the H+ wave are directed downward through the 
paper, (c) Circular motion of a perturbed electron and a resonant 
H+ wave. In the absence of the perturbation, the electron moves 
with superluminous velocity. The magnetic induction B0 is di
rected downward through the paper. The H+ wave and the elec
tron, when unperturbed, are directed upward through the paper. 

6. Criterion for an Instability 

In describing a plasma-beam instability, one may 
differentiate between the effects which are directly 
dependent on the character of the stationary plasma 
and the effects dependent on the characteristics of 
the beam. 

Waves in a stationary plasma are characterized by 
the quantities co and k which satisfy the dispersion 
equation F(«,fe) = 0. These waves may be resonant with 
the beam [i.e., satisfy the relationship oo—co where o> 
is given by (1-10)] or nonresonant with the beam [i.e., 
satisfy the relationship co=W where W satisfies (1-12)]. 

In the first-order approximation the nonresonant 
waves cannot be excited by the beam. This can be seen 
by substituting co= W+8", where 5" —> 0 as er —» 0, into 
the dispersion equation (1-4). Assuming |8"|<<C|W|, 
\8"\<£\W-ckfi-Qe(l-fi

2)ll2\y and approximating F in 
the neighborhood of w=lf by a Taylor series, the 
solution 

«"= — 
(F)^ T r [^ - -^ - -Oe( l~^) 1 / 2 ] - (Ta) e

2 ( l~^) 1 / 2 (^ -c^) 

(aF/aw)w»TF[TF-^~Oe(l--/5
2)1/2]--(7aJe

2(l--i82)1/2 (1-29) 

can be obtained which is seen to be real. Consequently, 
the nonresonant waves neither grow nor decay and are 
of no interest in this investigation. 

Consider a resonant wave in a plasma-beam system. 
The frequency of this wave is to=o>+5. Furthermore, 
it is assumed that for sufficiently small values of a one 
has 151 <3C | co |. In order to determine whether a resonant 
wave may be excited by a beam, one needs to substitute 

co=co+S in Eq. (1-4) and determine whether or not 
this equation gives complex roots for 5 having Im5>0. 

Approximating F in the neighborhood of co=co by 
Taylor series and retaining the first two terms in the 
series, one obtains 

(F)o,=<o+5= (F)«-H-8(dF/&o)«««. (1-30) 

Applying the above expression and co= co+5 to the dis-
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persion equation (1-4), one obtains 

&(dF/du)<*=&+S(F)<*=*-<JO)*tte(l-p
2) = 0. (1-31) 

The discriminant of (1-31) is 

A= [(F)w=«]2+4cra>e
2(l- jQ

2)(aF/^)o,=c5. (1-32) 

Expression (1-32) is positive if 

(dF/dco)a>=s>0. (1-33) 

Consequently, when the inequality (1-33) is satisfied, 
there is no instability. 

Consider now the inequality 

(dF/do)) 03 = « < 0 . (1-34) 

Expression (1-32) is negative provided one has the 
inequality (1-34) and the additional inequality 

[(F).-*? 
(dF/du)»-

<4<rcoe
2i2e(l-/32). (1-35) 

If a is very small, the inequality (1-35) is satisfied 
only when 

(F)«-«M>. (1-36) 

Therefore, there is always an instability when inequality 
(1-34) and condition (1-36) are satisfied. The expression 
(1-36) shows that the frequency has to be in the im
mediate neighborhood of the roots of the equation 
F(co,&) = 0. 

Taking into account the relationship (1-36), the 
following expression is obtained from (1-31): 

o-coe
2Qe(l-0

2) 

(dF/dw)«-< 

Thus the rate of growth,[lm5, may be expressed as 

|0W.U(1-|8*)»1/* 

(1-37) 

Im«= 
{dF/du>)w 

(1-38) 

The above derivations are based on the assumption 
that 181 <C | « | . Therefore, the values of co which satisfy 
cb ~ 0 should be excluded. 

The behavior of an excited resonant wave may also 
be characterized by a nondimensional parameter 

N=1m5/&. (1-39) 

This parameter represents the relative rate of growth 
of the wave expressed in decibels per cycle. The quan
tity a has to be sufficiently small so as to satisfy the 
inequality 

N<a. (1-40) 

7. Graphical Representation of Excited Resonant Waves 

A graphical representation of plasma-beam insta
bilities is given in Figs. 4 and 5. Two different assump
tions are made. 

Figure 4 is based on an assumption that k is given. 
The problem consists in determining the frequencies co 
of waves which may be excited by beams having various 
velocities /?. To each value of p corresponds one or 
more values of co. 

Figure 5 is based on an assumption that the velocity 
P of the beam is given. The problem consists in rinding 
waves which may be excited by such a beam. Each of 
these waves is characterized by definite values co and k. 

A. Excited waves characterized by a given value of k. 
Consider a function 

y = ( / ? ) „ . a > (1-41) 

which is illustrated graphically in Fig. 4 under the 
assumption that k is fixed. The zeros of this function 
satisfy the equation (F)U=S} = 0 and are labeled Ai, A3, 
A4, and A6. 

I t is noted that the values for co in Fig. 4 extend from 
— oo to + oo. However, not all of these values are 
physically significant since co is bounded and comprised 
within the range — ck < co < (c2&2+Oe

2)1/2. Therefore, 
some portions of the graph of Fig. 4 are not applicable 
to the present problem, and some of the zeros of the 
function (1-41) should be disregarded. 

I t can be shown by substituting the maximum and 
minimum values for co obtained from Fig. 1 into (1-41) 
and comparing the results with Fig. 4 that the root 
labeled Ax must be disregarded, and the only negative 
root which has physical significance is labeled A3. 
Similarly, it can be shown that under some conditions 
there are two positive roots labeled A4 and A6 which 
are physically significant. I t can be shown that in such 
a case two different values of ($ yield the same fre
quency Ae. Under other conditions there is only one 
positive root labeled as A4 which is physically signifi
cant, i.e., the point A6 has to be discarded. 

Thus, for a given value of k there are two (or three) 
values of co representing the frequencies of resonant 
waves which may be transmitted through the stationary 
plasma. One of these frequencies, labeled by the point 
A3, is negative while the remaining two are positive. 
In order to ascertain which of these waves may be 
excited, one needs to apply the criterion (1-34). Since 
the slope of the curve shown in Fig. 4 is positive at 
points A4 and Ae, there is no instability for waves 
having frequencies labeled by these points. However, 
the slope is negative at the point A3 and, therefore, 
there is an instability represented by this point. 

The curve in Fig. 4 applies to either k>0 or k < 0 and 
therefore is applicable to either H+ waves or Z7_ waves. 
Thus it is seen that the instability occurs for negative 
values of co for either an H+ or Z7_ wave. I t was pointed 
out in the discussion of Fig. 2 that negative frequencies 
correspond to a superluminous beam. Consequently, 
an instability occurs only when the beam has super-
luminous velocity. Referring now to Fig. 3, it is seen 
that there is a reversal in the direction of rotation of a 
wave which is in resonance with an electron beam 
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yB(F+)w »GJ 

FIG. 4. Graphical representation of 
y= (F)« =5 for a fixed value of k. 

WAVE MOVES IN 
-THE DIRECTION 

OPPOSITE TO 
THAT OF B0 

having superluminous velocity. This is in agreement 
with Fig. 4 which also shows that at resonance the 
frequency of the wave satisfies an inequality 

-Qi<6)<0. (1-42) 

Consequently, the magnitude of the frequency of the 
excited wave is always below the ion gyrofrequency 0*. 
Thus one cannot obtain a resonance between an excited 
wave and the ion gyrofrequency. However, one can 
achieve a condition near resonance, i.e., the wave fre
quency may approach the ion gyrofrequency from below 
and the difference Qt— co may be relatively small. One 
can also have a relationship |«|<$32t-. It is shown in 
Sec. 3 of this investigation that, in such case, the 
electron beam excites a hydromagnetic wave. 

The abscissas in Fig. 4 may represent either the values 
of (a or the corresponding values of 0. The variables w 
and 0 are related by the equality «=d&0+Q«(l—02)1/2 

in which k is fixed. Thus, when /3=0, one obtains co=fie 

which is represented by the point A5. The regions in 
which the beam velocity is in the direction of the 
magnetic field and against this direction are correspond

ingly marked in Fig. 4 for an H+ wave (k>0). For an 
H-. wave (k<0), the directions of the beam and wave 
would be the reverse of those shown. It is noted that the 
instability occurs only when the wave and the beam 
have the same direction (opposite the direction of Bo 
for an H+ wave and in the direction of B0 for an Z7_ 
wave). 

B. Waves excited by a beam moving with velocity 0. In 
various practical applications the velocity eft of the 
beam is given. Therefore, in exploring the instabilities, 
one assumes that co varies with k in accordance with the 
expression &= ckp+Qe(l—02)1/2 while 0 remains fixed. 
Consider now expression (1-5). Assuming that 

w=aj, ^=[co-06( l - iS
2)1 /2]M (1-43) 

and substituting the above values of co and k, one obtains 

(F)u>««, k = [« - o . ( i -/32)i/*]/43=^(a>) 

a(l- /32)1 / 2 \2 a*&(l+a) 1 / a(l- /32)1 / 2 \2 

(32\ a J (co+12i) (aco—Ui) 
, (1-44) 

where a=m/M{. 

y«^(0) 

FIG. 5. Graphical representation of 
y=\p(a)) for a fixed value of p. 
0^3=Oe(l-/32)1 /2 . 

_ WAVE MOVES IN THE DIRECTION 
OPPOSITE TO THAT OF B. 

WAVE MOVES IN THE 
DIRECTION OPPOSITE 
TO THAT OF B. 
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Depending on the values of the parameters of the 
system, one may obtain a graph of the function y=\l/(&) 
as given in Fig. 5 or a similar graph (not shown) where 
the branch to the right of the point A5 intersects the 
axis of abscissas. Thus there are two or four points of 
intersection of the graph y=\f/(6)) with the axis of ab
scissas. The graph of Fig. 5 shows two such points 
which are labeled as A2 and A4. In order to determine 
which of these points represents an instability, one 
should consider the expression (1-37) for 8 and ascer
tain whether this quantity is real or complex. Using 
(1-5) and (1-37), one can represent 52 as follows: 

52= . (1-45) 
a2w£2+o)^i(cb+2Qi)/(o)+^i)

2(ao)--Qi)22 

I t can be seen that no positive value of & will make the 
expression (1-45) negative and, therefore, no positive 
solution for & can give rise to an instability. On the 
other hand, any negative value of w such that 

\cb\<2Qi (1-46) 

will correspond to an instability. Therefore, there is an 
instability for any solution for w satisfying the in
equality —O;<w<0. 

Figure 5 shows the frequency ranges for which the 
resonant wave moves with or against the magnetic 
field under the assumption that 0<O, i.e., the beam 
is directed against the magnetic field. 

8. Quantitative Study of Instabilities 

A. Anomalous Doppler effect. A plasma-beam insta
bility occurs when the beam moves with superluminous 
velocity. There is a definite relationship between the 
instability produced by a beam and the behavior of a 
single particle moving with superluminous velocity. 
In the case of a thermal plasma with no external mag
netic field, a formal analogy has been established be
tween the longitudinal instability produced by the beam 
and the longitudinal Vavilov- Cerenkov effect produced 
by a particle moving with the same velocity as the 
beam.18 A similar analogy exists when the plasma-beam 
system is immersed in a static magnetic field. In such 
case the beam effect is expressed by a transverse in
stability and the particle effect by the anomalous 
Doppler radiation.4 

The instability of the "Doppler wave" has been 
accounted for by Zhelezniakov4 by the quantum theory 
of radiation. The perturbed electrons moving with the 
beam perform oscillatory motions at electron gyro-
frequency, and, therefore, these electrons may be 
considered as oscillators having proper frequency co0= 0e . 
For an electron beam moving with subluminous ve
locity, the "Doppler radiation" emitted by any single 
electron will be absorbed by the beam itself. On the 
other hand, for a beam moving with superluminous 

18 Jacob Neufeld, Phys. Rev. 127, 346 (1962). 

velocity the "Doppler radiation" emitted by any single 
electron will be amplified by the emission of a photon 
and will induce other electrons to effect transitions into 
higher energy states. Consequently, there is a conver
sion of the kinetic energy of the beam into the energy 
of a growing electromagnetic wave. 

The instability represented by the point A3 in Fig. 4 
or by the point A2 in Fig. 5 is characterized by a nega
tive frequency o>. On the other hand, in the conventional 
representation of the Doppler effect (both normal and 
anomalous) the frequency radiated by the moving 
oscillator is always positive. Nevertheless, there is 
formal analogy between the representation in Figs. 4 
and 5 and the conventional representation. 

In order to point out the above analogy, consider 
the conventional representation of the Doppler effect. 
Assume that an oscillator having proper frequency a>o 
moves with subluminous velocity ft in a dispersive 
medium characterized by a refraction coefficient nr. 
One has then 

0 * r < l , (1-47) 

and the frequency co radiated by the oscillator along 
the direction of its motion is expressed as 

c o = o J o ( l - / 3 2 ) 1 / 2 / ( l - ^ r ) . (1-48) 

Expression (1-48) represents the normal Doppler effect. 
Assume now that the velocity of the oscillator is super-
luminous. Then 

j8»r>l, (1-49) 

and the frequency radiated by the oscillator along the 
direction of its motion is expressed as 

« = - « o ( l - j 8 2 ) 1 ' V ( l - i 8 » r ) . (1-50) 

Expression (1-50) represents the anomalous Doppler 
effect. 

Equations (1-48) and (1-50) are generally derived 
from the microscopic description of the emission of a 
photon by a moving oscillator. Assume that ha is the 
energy of the emitted photon, AE is the change in the 
kinetic energy of the oscillator which results from the 
emission, and huo is the change in the internal energy 
of the oscillator. One has 

AE=hw±hcc0. (1-51) 

In the normal Doppler effect, as expressed by (1-48), 
the oscillator effects a transition from a higher energy 
state to a lower energy state. In such case the energy 
ho)Q of the emitted photon is compensated at least partly 
by the excitation energy fUoo of the oscillator. Thus the 
sign "minus" must be assigned in (1-51) to the term 
hojQ. By combining (1-51) with the equation for the 
conservation of momentum, one obtains the expression 
(1-48). On the other hand, in case of an anomalous 
Doppler effect, the kinetic energy of the moving oscil
lator is converted into the energy ha> of the emitted 
photon and into the excitation energy ho)Q. Thus by 
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assigning "plus" to the term #co0, and combining (1-51) 
with the equation for the conservation of momentum, 
the expression (1-50) is obtained. 

Consider now the formulation of radiative effects 
contained in this investigation and particularly ex
pression (1-17) representing the frequency of a resonant 
wave in a plasma-beam system. It is assumed that a is 
sufficiently small so that the inequality |5|<$C|w| is 
satisfied. Let 

nr=ck/cb (1-52) 

represent the index of refraction of the plasma-beam 
medium. Substituting (1-52) in (1-17) and assuming 
6 = 0, one obtains 

d>=Oe(l-^)1/2/(l-w r/5). (1-53) 

The above expression has a formal resemblance to 
expressions (1-48) and (1-50) representing the normal 
and anomalous Doppler effect associated with an oscil
lator having proper frequency coo equal to the electron 
gyrofrequency £le. It should be pointed out, however, 
that Eq. (1-53) is based on classical electromagnetic 
theory, i.e., no consideration was given to the micro
scopic behavior of a single oscillator. Thus, the quantity 
tie is always positive and there is no reversal in the sign 
of Oe when subluminous velocity is replaced by super-
luminous velocity. There is, however, a reversal in the 
sign of the term <£>. The quantity o> is positive for sub-
luminous velocities and negative for superluminous 
velocities. The considerations leading to this reversal 
of sign for superluminous velocities have been set 
forth in connection with Fig. 3(a-c). 

B. Velocity range for beams which are effective in ex
citing electromagnetic waves. When k is fixed, excitation 
is obtained when the beam velocities are contained 
within a determined range. The extent of this range will 
now be established. Taking into account the in
equality —2{<cb<0 representing the range of fre
quencies that may be excited, and the relationship 
a>—ck/3-\-Qe(l— 02)1/2, it can be ascertained that for 
k>0 the velocity ft of a beam that causes the excitation 
is comprised within the range 

0 .<0<ft , (1-54) 
where 

/3 a =-0 , / (O e
2 +^ 2 ) 

X{^a+[^ 2 +O e
2 ( l -a 2 ) ] 1 / 2 } , (1-55) 

and 

pb~-Qe/(&e2+cWy!\ (1-56) 

Assuming that a2<<Cl, (1-55) becomes 

0«= -C^ e / (O e
2+^2)1 /2]-C^O ca/(f i e

2+^2)] . (1-57) 

C. Frequencies of excited waves. Consider the equation 
^(w) = 0 where \p(6o) is given by (1-44). This equation 

can be represented as 

1 / ( l - j f f^ 'V ,42X2(l+a) 
X2 ( X ) =0, (1-58) 

/32\ a ) ( X + l ) ( a X - l ) 

where 

A = a)i/tti and X=o>/U-. (1-59) 

It can be seen from Eq. (1-58) that for X<0 (i.e., 
when the velocity of the beam is superluminous), the 
equality (1-58) can be satisfied only if 

- 1 < X < 0 . (1-60) 

This inequality is identical to the inequality (1-42) 
resulting from the graphical methods of Figs. 4 and 5. 

Expression (1-58) represents a functional relation
ship between three nondimensional quantities: X, A, 
and /3. This relationship specifies conditions under 
which an instability may occur. Thus, for a given 
stationary plasma (A and co» are known), one can deter
mine the frequencies w that may be excited by beams 
having various velocities /?. Similarly, if the velocity (3 
of the beam is known, one can ascertain the values of 
A for which the excitation may occur and the corre
sponding values of X. Various graphs representing the 
behavior of the relationship (1-58) are given in Fig. 6. 

Taking into account a « l , the terms a or aX may be 
neglected when either is added to 1 and thus (1-58) 
can be represented in the following form: 

r 2X(1-/32)1/2 (l-/32)l 
X2(l-/32) + (X+l) 

L a a2 J 

-A2p2X2=0. (1-61) 

txi 

FIG. 6. Graphical representation of the relationship between X, 
At and 0 (for an electron beam). 
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Since, a « l and - 1 < X < 0 , it is clear that 

\X2(l-(32)\«(l-p2)/a2. (1-62) 

Therefore, taking into account (1-62), the expression 
(1-61) can be represented in the form 

[ l - i 8
2 - 2 X a ( l - i 8

2 ) 1 / 2 ] ( X + l ) 
A2= . (1-63) 

a2$2X2 

Using the equality (1-61), the quantity X can be 
expressed explicitly as a function of the parameters A 
and 13 of the plasma-beam system. 

Using (1-62), Eq. (1-61) becomes 

r2( l - /3 2 ) 1 / 2 1 r2( l - /3 2 ) 1 / 2 l - /3 2n 
X* +A*0* \+X\ 

L a J L a a2 J 

l-t 
= 0. (1-64) 

az 

The solution of (1-64) can be expressed in the fol
lowing form: 

( l - / 3 2 ) 1 / 2 / 2 a - l ± C ( l + ( l - / 3 2 ) 1 / 2 / 2 a ) 2 + ^ W / 2 

2+i l*j0V/( l -/32)1/2 

(1-65) 

.1 Z .3 A 3 £ .7 B 9 IX)/3 

FIG. 7. Graphical representation of the relationship between Nlt 
A, and fi (for an electron beam). 

The only values of X which can yield an instability 
satisfy inequality (1-60) and, therefore, the solution 
corresponding to the ( + ) sign in front of the radical 
should be discarded. 

D. Rate of growth. The rate of growth Im5 is obtained 
from (1-37) or (1-45). Using the nondimensional quan
tities X and A as given by (1-59), the growth rate can 
be represented as 

Im5 = 
wa-^xx+i)2 

a 2 Z [ 2 ( X + l ) 2 + ^ 2 ( X + 2 ) ] 
(1-66) 

In deriving the above expression, the terms a and aX 
have been neglected when added to or subtracted from 1. 

Consider now the relative rate of growth N repre
sented by (1-39). This quantity can be expressed as 

where 

7Vx= 

N=oU*Ni 

A2(l-(32)(X+1)2 

(1-67) 

(1-68) 
\a2X3[2(X+l)2+A2(X+2)l I 

Taking into account the inequality iV<<Cl, one obtains 

Tl/2< « l / t f l (1-69) 

Expression (1-69) indicates the restriction which the 
inequality (1-40) places upon the permissible density 
of the beam. 

Substituting X as given by (1-65) into (1-68), one 
obtains 

Nr 
(1-P2)A2T*(U+T-S)2 

a2(U-Sy[2(U+T-S)2+A2T(U+2T-S)~] 

where 
(1-70) 

(1-71) 7 ,= 4a(l-/32)1 /2+2aM2
i8

2 , 

5 = 2 a ( l - / S » H ( l )+AW\ , (1-72) 

and 

U=l-l32-2a(l-(32) 1/2 (1-73) 

Expression (1-70) describes a functional relationship 
between three nondimensional quantities: iVi, A, and J3. 
This relationship is illustrated graphically in Fig. 7. 

Figures 6 and 7 describe the quantitative behavior 
of a plasma-beam system under various specific condi
tions. Assume that the stationary plasma is known, i.e., 
the value of the parameter A is given. One selects in 
Fig. 6 a graph corresponding to this value and repre
senting a relationship between X and p. Since Ot- is 
also known, one can ascertain from this graph the fre
quencies o) of resonant waves which may be excited by 



I N S T A B I L I T I E S I N A P L A S M A - B E A M S Y S T E M 1499 

a beam of any given velocity p. The corresponding 
value of N\ may be obtained from the graph in Fig. 7 
which corresponds to the same value of A. When Ni 
is known, the permissible value of a can be determined 
by taking into account the inequality <T<&1 and ex

pressions (1-30) and (1-69). The relative rate of growth 
of the wave can then be determined from (1-67). 

The quantity A7i may also be expressed explicitly as 
a function of X and p. Thus, substituting A2 as given 
by (1-63) in (1-68), one obtains 

iVx= 
(1_ /32)3/2[(1_ i82)l/2_2XQ !](X+l)2 

a2X*[2a2p2X2(X+1)+ (1 -j32)1/2[U -p2)m- 2Xa] (X+2)] 

1/2 

(1-74) 

A simplified form of relationship (1-68) will be de
rived for each of the two extreme cases A^>\ (i.e., 
o>i»Gt) and ^ « 1 (i.e., «t«32,). When 4 » 1 , the pa
rameter Ari can be expressed as follows: 

Nr-
(l-p2)(X+l)2 

(1-75) 

When |co|<3C12» (i.e., when 
following expression: 

ATi=|(l-/S»)/2a»X»|1'*. 

a2X3(X+2) 

X | « l ) , (1-68) yields the 

(1-76) 

It is shown in Sec. 3 of this investigation that for 
| cb | «Q* one has a hydromagnetic wave and, therefore, 
expression (1-76) is applicable to such a wave. 

When ;1<<C1, the parameter Ni can be expressed as 

A^=|( l -£2)^2/ 2 a2X3(l /2 . (1-77) 

It is shown in Sec. 3 of this investigation that when 
4̂<<Cl, the frequency of the excited wave is close to the 

ion cyclotron frequency and expression (1-77) applies 
to such a case. When the excited wave is close to the 
ion cyclotron frequency, expression (1-77) yields the 
following form for the expression (1-69): 

dl^<^J2a/A{\-p2) 1/2 (1-78) 

9. Graphical Method of Bernstein and Trehan 

In a recent investigation, Bernstein and Trehan2 ex
plored various plasma-beam instabilities by means of a 
graphical procedure. Thus the quantity y=<f> as de
fined by (1-4) was plotted as a function of co (see Figs. 
8, 9, and 10). In order to conform to the notation used 
by Bernstein and Trehan, the sign of the variable on 
each axis has been reversed. 

There are several distinctive features which are differ
ent in the Bernstein and Trehan graphs from those 
shown in Figs. 4 and 5, which illustrate the behavior 
of functions y= (/<%=*£ and y=^(oL.), respectively. 
These functions represent a stationary plasma, whereas 
in the Bernstein-Trehan representation the function 
y=<t> represents the plasma-beam system. The inde
pendent variable in Figs. 4 and 5 represents the fre
quency o) of resonant waves, whereas in the Bernstein-
Trehan graphs the independent variable co may not be 
in resonance with the beam. The Bernstein-Trehan 
representation is based on an assumption that k and P 

are fixed. On the other hand, in Fig. 4 an assumption 
was made that k is fixed and the variable quantities 
ib and p are related to each other by the expression 

FIG. 8. Graph of y=<j> for j8=/3i; OC^ckfa 
OCs = ckPi-~ae(l-p

2)ll2+8. 
-O.tt-jS8)1' 

FIG. 9. Graph of y=<j> for 0=jft>0i; OC7=c£fo-Oe(l-i32)1/2. 

FIG. 10. Graph of y = <t> for 0 = 0 t > 0 2 ; OC7»c*|8s-fi.(l-|8a)1 '*; 
OCio=c££3-O e(l-02)1 / 2-5. 
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w=6Jfe,fl+Oe(l--j32)1/2. In Fig. 5 an assumption was made 
that 0 is fixed and the variable quantities o> and k 
are related to each other by the same expression. 

It has been shown by Bernstein and Trehan that by 
varying the velocity of the beam, one changes the 
character of the graphs in such a manner that for 
critical values of 0 some of the points of intersection of 
the curve y= — <j> with axis of abscissas "disappear." The 
real roots of the dispersion equation <j>=0 are then 
replaced by complex roots which indicate an instability. 
The graphs of Figs. 8, 9, and 10 illustrate certain addi
tional features of the Bernstein-Trehan representation. 
It is shown that if one increases the beam velocity 0 
beyond the values considered by Bernstein and Trehan, 
some of the points of intersection may "reappear," and 
the system becomes stable again. 

Assume that the value of 0 is given, i.e., £=#1, and 
consider Fig. 8 representing the graph y——<f> corre
sponding to this value. There are five points of inter
section of the graph y=—<t> with the w axis. These 
points are designated as Cr • C5, and represent all the 
roots of the dispersion equation (1-4). Since these roots 
are real, there is no instability. 

A similar graph is given in Fig. 9. However, in this 
figure the beam velocity 0=02 is larger than the beam 
velocity 0=0i represented in Fig. 8. This increase intro
duced qualitative changes in the behavior of the graph 
y=~<t>. Thus in Fig. 9 the point C7 representing the 
quantity ck02—Oe(l—82)m has moved toward the 
point Cg representing 0 t. The portion of the curve 
contained between points C7 and C8 has been com
pressed and its maximum has become lower. There 
exists a limiting value of 0 above which this portion 
does not intersect the axis of abscissas. When this 
happens, the dispersion equation "loses" two real roots 
such as C3 and C4 and gains two complex conjugate 
roots. This is shown in Fig. 9. In this figure there are 
only three points of intersection of the curve y=—<j> 
with the axis of abscissas. The two lost roots become 
complex and represent an instability. 

By increasing the beam velocity again, the portion 
of the curve between the points C7 and Cs is compressed 
further and the maximum of this portion continues to 
go down. It is interesting to note, however, that for 
sufficiently small values of a the instability disappears 
although there are no points of intersections within the 
compressed portion of C7C8. This is shown in Fig. 10 
for which 0=0$ where 0z>02. The points of intersection 
which disappeared in the compressed portion as shown 
in Fig. 9 reappear in Fig. 10 in the portion of the curve 
between the points O and C7. Consequently, the graph 
of Fig. 10 provides five real roots for w, and there is 
no instability. 

The "transition" from Fig. 8 to Fig. 9 is similar to 
the one illustrated by Bernstein and Trehan. It shows 
that for increasing values of the velocity 0, an initially 
stable system may become unstable. One should observe, 
however, that if the velocity is increased further, one 

ss1 

B4 

" ' I l A * 
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FIG. 11. Relationship between the angular frequency &* of a 
resonant wave and the linear velocity 0 of the ion beam. 

may obtain an additional "transition" from Fig. 9 to 
Fig. 10. In this additional transition the two points of 
intersection that previously vanished appear again, and, 
therefore, there is no instability. This additional transi
tion is significant since it shows that the beam velocity 
associated with an instability is contained within a 
range having an upper and a lower bound. 

2. PASSAGE OF AN ION BEAM THROUGH PLASMA 

I. General Considerations 

Consider now a charge equilibrated system in which 
the fraction <rt of the ions are moving with velocity 
v=(k through a stationary plasma immersed in a 
magnetic field B0||(5. The stationary plasma consists of 
electrons and a fraction 1—en of the ions. The assump
tions made here are the same as in the case of an electron 
beam passing through plasma. It is assumed that the 
plasma is cold, the intensity of the beam is very small, 
and the wave resulting from the plasma-beam inter
action is aligned along the direction of the magnetic 
field. 

The dispersion equation may be represented as13 

a(\-02)l,W{o>--ck0) 
4>i**4n(<*,k) = F , (2-1) 

w-ck0+Qi(l-02)l/2 

where F is given by (1-5). It is assumed that oyC<l. As 
in the case of the electron beam k>0 represents an 
H+ wave and k <0 represents an #_ wave. 

It can be shown that the ion beam is capable of ex
citing only those waves which are in resonance with the 
ion beam. The frequency o) of the resonant wave can be 
expressed as 

w=«H-$, (2-2) 
where 

«'«c#-O<(l-08)1 '». (2-3) 

The relationship (2-3) is represented graphically in 
Fig. 11 for an H+ wave. 

The solution of the dispersion equation (2-1) can be 
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written as 
r <KO,^ (1 - JS 2 ) 1 / 2 - | 1 / 2 

subject to the conditions 

|S|«|d>i[; (J0--*"*0, 

- ^ i (w '> 

(2-4) 

(2-5) 

and also that a valid approximation is obtained by re
taining two terms of the series expansion for (F)« =»<+*: 

F= (F)«-&<+5(dF/d«)«-a<+ • (2-6) 

Consider the waves which may be excited in a plasma 
by an ion beam of a known velocity p. Substituting in 
the dispersion equation F = 0 the values for w and k 
which correspond to resonant waves, i.e., 

«=«<, ^ = [^+O e(l~^)1 / 2]A iC9, (2-7) 

one obtains the following equation for waves excited 
by an ion beam: 

1 

= 0. (2-8) 
co*+0» aco*—0* 

Figure 12(a-c) shows three different forms of the 
graph of the function y=^ t(a>0- These graphs corre
spond to three sets of values of P and A. The points of 
intersection of each graph with the axis of abscissas 
represent the roots of the equation \l/i(&i) = 0. In order 
to determine which of these roots represents an in
stability, one should consider the expression (2-4) for 
8 and ascertain whether this quantity is real or complex. 
Substituting (1-5) in (2-4), one obtains 

wttl-P) 
(2-9) 

where 
2Y+A2/(aY-l)2-A2/(Y+l)2 

F=«*/O t- and A=a>i/Qi. (2-10) 

I t can be seen from expression (2-9) that 52 is nega
tive and, consequently, there is an instability only if 
w*>0. By applying arguments similar to those used for 
an electron beam, it can be shown that w*>0 corre
sponds to a superluminous velocity of the ion beam 
both for H+ and £Z_ waves. 

The graph of Fig. 12(a) shows only one point of 
intersection with the axis of abscissas for which w*>0. 
This point, labeled A3, represents the only wave that 
may be excited by the ion beam. A similar situation is 
represented in Fig. 12(b) in which the ion beam pro
duces a single instability labeled A9. I t should be noted, 
however, that there are values of the parameters A and 
P for which the graphical representation of y=^t(«*) 
shows some distinctive qualitative changes. This is 
shown in Fig. 12(c) in which one obtains three points of 
intersection characterized by «*>(). These points, 
labeled Ai3, A H , and A15, represent three resonant 

r 

' " 1 

if i 
i 

1^(2') 

0 

&• 

/ A 9 

f l 
1 

INSTABILITY 

|AIO 

•1 ^ \ 
V ^ 

(b) 

v«fy(3') 

FIG. 12. (a)-(c) Graphical representation of y~ypi(&) for 
three different values of £. 

waves which may be excited by an ion beam. The 
occurrence of three resonant waves was pointed out by 
Ginzburg.11 

I t can be seen from Figs. 12(a), 12(b), and 12(c) 
that the frequencies 6ol characterizing the ion beam in
stabilities satisfy the following relationship: 

0<o3i<Qe=niMi/m=ni/a. (2-11) 

Consequently, the frequency of an excited wave may 
extend from very low frequencies for which «*<CS2t up 
to the electron gyrofrequency. One can achieve a con
dition near resonance in which the wave frequency may 
approach the electron gyrofrequency from below and 
the difference (fle—d>*) may be relatively small. 

By applying a method similar to the one used for the 
electron beam, it can be shown that the excitation of 
H+ wave occurs only if the beam moves with super-
luminous velocity in the direction of the magnetic field. 
The angular velocity of the H+ wave has the same 
direction as the angular velocity of the perturbed sta
tionary electrons in the plasma. 

II. Frequencies of Excited Waves 

Using F = coy^ and A^ui/toi, Eq. (2-8) may be 
expressed as 

1 ^ 2 F 2 ( l + a ) 
F2 [ F + ( l ~ ^ ) 1 / 2 ] = 0 . (2-12) 

P2 (F+l)(aF-l) 
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FIG. 13. (a) Graphical representation of the relationship be
tween F, A, and (3 (for an ion beam), (b) Enlarged portion of 
the graph of (a). 

It can be seen that when F > 0 (i.e., when the velocity 
of the ion beam is superluminous), the equality (2.12) 
may be satisfied only if 

0 < F < l / a . (2-13) 

This inequality is identical with the inequality (2-11) 
resulting from the graphical method of Figs. 12(a), 
12(b), and 12(c). 

The expression (2-12) describes a functional relation
ship between three nondimensional quantities F, A, and 
j(3. This expression is analogous to the expression (1-58) 
obtained for an electron beam. Various graphs repre

senting the behavior of the relationship (2-12) are 
shown in Figs. 13(a) and 13(b). 

III. Rate of Growth 

Neglecting in (2-9) a when compared to 1, the rate 
of growth for a wave excited by an ion beam can be 
expressed as 

Im5= 
- c W ( l - £ 2 ) ( a F - l ) 2 ( F + l ) 2 

2F(aF- l ) 2 (F+l ) 2 +.4 2 F(F+2) 
(2-14) 

The relative rate of growth N—Imd/^ can be ex
pressed in the form N=ai1/2Ni where 

tfi= 
- ^ 2 ( l - 0 2 ) ( a F - - l ) 2 ( F + l ) 2 

F 3 [2 (aF~l ) 2 (F+l ) 2 +^ 2 (F+2) ] 
(2-15) 

The assumption iV«l places the restriction o-*1/2«l/iV"i 
on the permissible density of the beam. 

Combining Eqs. (2-12) and (2-15), the term F can 
be eliminated, yielding an expression which describes a 
functional relationship between the nondimensional 
quantities Nh A, and 0. This relationship is analogous 
to the expression (1-70) obtained for an electron beam 
and is illustrated graphically in Fig. 14. 

The behavior of instabilities under various conditions 
can be ascertained by means of Figs. 13(a), 13(b), and 
14. Thus, if the parameter A of the plasma is known, 
one obtains from Fig. 13(a) or (b) a graph representing 
a relationship between F and 0. Since Ui is known, one 
can ascertain from this graph the frequencies of excited 
resonant waves and the corresponding velocities of the 
ion beam. By means of Fig. 14 one obtains the values 
of Ni corresponding to these frequencies and velocities. 
Taking into account ov<$Cl, o-t«l/iVi, and (2-6), the 
permissible values of <n and the relative rates of growth 
can be determined. 

If 4̂̂ >>1, the term N\ can be expressed in the simplified 
form: 

| - ( l - ^ 2 ) ( a F - l ) 2 ( F + l ) 2 | 1 / 2 

Ni= 
F3(F+2) 

(246) 

3. COMPARISON OF THE EXCITATION MECHANISMS 
PRODUCED BY ELECTRON AND ION BEAMS 

I. General Considerations 

Both an electron beam and an ion beam are capable 
of exciting electromagnetic waves when the following 
three conditions are satisfied: (a) the waves move in 
the same direction as the beam, (b) the beam moves 
with superluminous velocity, and (c) the waves are 
"resonant'' with the beam. 

Resonant waves excited by an electron beam are 
different from those excited by an ion beam. For an 
electron beam the frequency of the excited wave is in 
resonance with the gyrofrequency of the electrons in 
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N, 

FIG. 14. Graphical representation of the relationship between Ni, 
A, and £ (for an ion beam). 

the beam, whereas for an ion beam the frequency of the 
excited wave is in resonance with the gyrofrequency of 
the ions in the beam. 

Both H+ and H- waves may be excited by a beam. 
A beam of electrons moving in the direction of the 
magnetic field is capable of exciting fiL waves only, 
whereas only H+ waves are excited when the beam 
moves in the direction opposite to the magnetic field. 

Due to the resonance effect, both H+ and Z7_ waves 
excited by an electron beam rotate in the same direc
tion and with the same angular frequency as the 
gyroelectrons of the beam. There occurs, however, an 
"anomalous effect'' represented by a reversal in the 
direction of rotation caused by the superluminous ve
locity of the beam. Consequently, an excited H+ or 
ZL. wave has a circular motion in the same direction 
as the gyrofrequency of the stationary ions. Further
more, the frequency of such a wave is contained within 
the range — O;<<£<0. 

An ion beam moving in the direction of the magnetic 
field is capable of exciting H+ waves only, whereas 
only JEL. waves may be excited when the ion beam 
moves in the direction opposite to the magnetic field. 
The excited H+ and #_ waves rotate inthe same 
direction as the perturbed electrons in the stationary 

plasma. The frequency of a wave excited by an ion 
beam is always below the frequency of the perturbed 
stationary electrons. Thus the ion beam may excite 
waves having frequencies & within the range 0 < & <Oe. 
This range is considerably wider than the range of fre
quencies —&;<<£<() excited by an electron beam. 

It may be of interest to point out that an ion beam 
is capable of exciting a wave having frequency co* which 
is numerically equal to the ion gyrofrequency &t. How
ever, this inequality does not have any particular 
physical significance since it does not represent an 
ionic resonance. While the frequencies of the excited 
wave and of the perturbed ion are the same, the direc
tions of rotation are opposite to each other. 

There are significant qualitative differences in the 
behavior of the instabilities produced by an electron 
beam and those produced by an ion beam. These dif
ferences may be readily observed from Figs. 6, and 
13(a) and (b). Thus, it is seen from Figs. 13(a) and (b) 
that for certain values of the parameters A and /3 an 
ion beam may excite simultaneously three waves. This 
effect has already been noted by M. A. Ginzburg.11 

However, it can be seen from Fig. 6 that an electron 
beam may excite only one wave for a given set of 
values of A and /?. 

The quantity A = o)i/Ui= (AwnMi)mc/B$ which de
pends upon the strength of the magnetic field and the 
density of the medium is very important in determining 
the behavior of a plasma. A very useful classification of 
various types of plasma was recently introduced by 
Denisse and Delcroix.12 Thus a plasma is "very rare
fied" when A<$1 and "rarefied" when . 07<4<1 . 
Both rarefied and very rarefied plasma occurs in evacu
ated vessels having pressure of the order of 10~5 mm of 
Hg in the presence of a very strong magnetic field 
(cyclotrons, vacuum gauges, etc.). For the ionosphere, 
one has ^4^1.5X102, and in such a case the plasma is 
"dense." The dense plasma is characterized by A > 50 
and therefore there are other examples of dense plasma 
such as thermonuclear discharges, interstellar clouds, 
etc. A plasma of small density is characterized by 
1<A<50. Various air-discharges and solar corona may 
be represented by a dense plasma or by a plasma of 
small density. 

Figure 15 illustrates the typical behavior of various 
plasmas as classified above. The effect of electron beams 
on various types of plasma is based on Fig. 6, whereas 
the effect of ion beams is based on Figs. 13(a) and 13(b). 

II. Excitation of Waves by an Electron Beam 

Consider now the graphs of Figs. 6 and 7. Figure 6 
shows the frequencies which may be excited for various 
values of A and /?. A separate curve has been plotted 
of X as a function of fi for each of the several values of 
A. The values of A extend from A = 102 to A = 106. For 
each A the appropriate curve shows a one to one corre
spondence between X and 0. Thus a beam characterized 
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FIG. 15. Typical behavior 
for various plasmas. 

by a given value of 0 is capable of exciting only one 
wave determined by the corresponding value of X. 

The values X ~ l and X<3Cl are of particular interest 
and the conditions under which frequencies represented 
by these values can be excited shall be determined. 
When X^l, one has a3~Ot- and the excited wave has a 
frequency which is very close to the ion gyrofrequency 
(but somewhat below the ion gyrofrequency). When 
X « l , one has £K3CQ*. One may obtain then a hydro-
magnetic wave if certain other conditions are also 
satisfied. The criterion for the occurrence of a hydro-
magnetic wave in an undisturbed stationary plasma 
may be obtained from the dispersion equation F=0 . 
Using the inequality oo=aK<Qi, one obtains19 

where 
&=M/(l+c*/VA*), 

VA = Bo/(kimM%)li\ 

(2-17) 

(2-18) 

Applying the relationships (1-1) and (1-2), and using 
the term A=o)i/Qiy (2-17) can be expressed as 

«Y#=cY(l+4*). (2-19) 

Expression (2-19) represents the dispersion equation 
for a low-frequency wave which may be propagated in 
an undisturbed plasma described by the dispersion 
equation (1-5). Of particular interest are two limiting 
forms of this wave. Thus assuming A^>1, one obtains 
from (2-19) 

(b/k^c/A^VA. (2-20) 

Expression (2-20) represents a low-frequency wave 
moving with Alfven velocity VA. On the other hand, 
when 4̂<$Cl, one obtains 

0)/k — C. (2-21) 

The above expression represents a low-frequency wave 
propagated with the velocity of light. 

19 See, for instance, I. B. Bernstein and K. Trehan, Nucl. 
Fusion 1, 3 (1960). 

One can ascertain now which one of the two low-
frequency waves may be excited by an electron beam— 
the slowly moving hydromagnetic wave represented 
by (2-20) or the wave (2-21) moving with the velocity 
of light. 

Consider first the wave represented by (2-21). A 
necessary condition for the occurrence of such a wave 
is given by the inequality 4̂<3Cl. It is noted that the 
curves plotted in Fig. 6 correspond to various values 
of A for which this inequality is not satisfied since these 
curves correspond to , 4»1 . The curves satisfying the 
inequality 1̂<<C1 cannot be conveniently represented on 
the scale of Fig. 6. All of these curves would be approxi
mated very closely by a straight line parallel to the p 
axis and corresponding to X—1. Thus the graphs for 
y4«l represent loci of points for which a>~&;. Therefore, 
for v4<Cl the beam is capable of exciting only waves 
having frequencies close to the ion gyrofrequency and 
one may assume that there are no low-frequency waves 
excited by the beam. Consequently, excited waves of 
the type (2-21) are nonexistent in the plasma-beam 
system. 

One can, however, excite a hydromagnetic wave since 
each of the graphs plotted in Fig. 6 corresponds to Ay>l. 
It is noted that for each A there is a different range of 
values of 0 which is needed for the excitation of a hydro-
magnetic wave. Thus for 4̂ = 106 one may excite a 
hydromagnetic wave when the velocity of the beam 
occupies a relatively wide range extending from very 
low values of 0 up to ft approaching 1. Thus, assuming 
that the excited hydromagnetic wave corresponds to 
Z=0.01, one obtains for 0 a range 0.17 < 0 < 1 . If A 
is smaller, the corresponding range for 0 is considerably 
shortened and the low velocity region is eliminated. 
Thus when A = 105 one has 0.87 </3 <1 and for a some
what smaller value of A such as A = 5X10*, one may 
excite a hydromagnetic wave (corresponding to 
X=0.01) if the beam has a velocity in the relativistic 
range (/3~0.99). 
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Consider now the conditions which are necessary for 
exciting waves close to the ion gyrofrequency. These 
conditions are strongly dependent on the parameter A. 
The case of A<K1 was discussed above, and it has been 
pointed out that the frequency a>^0» would be excited 
for nearly all values of j3. This situation remains sub
stantially the same when A^l and even when A is 
considerably larger than 1. One can assume from Fig. 6 
that for any value of A comprised within the range 
I<v4<10 the waves excited by the beam have fre
quency o)^U{ for all nonrelativistic values of 0. This 
situation changes rapidly, however, for increasing 
values of A. Assume that the excited wave in the neigh
borhood of the ion gyrofrequency satisfies the relation
ship X=0.99 . Thus when A = 103, the beam may excite 
the wave if its velocity is comprised within the range 
£<0.19. When A assumes still larger values, i.e., for 
A = 104 one may excite a wave corresponding to X=0 .99 
only if the velocity of the beam is extremely small 
(0 <0.02). 

Figure 7 together with Eq. (1-69) shows the rela
tionship between the relative growth rate N and various 
values of A and f$ for a sufficiently small value of a. 
As in Fig. 6, a separate curve has been plotted for N\ 
[as expressed by the equation (1-70)] as a function of (3 
for several values of A. An examination of Fig. 7 reveals 
at once that the relative growth rate increases with 
increasing values of A for a fixed value of 0 and in
creases with increasing values of 0 if A is fixed. 

III. Excitation of Waves by an Ion Beam 

Consider now the graphs of Figs. 13(a), (b), and 14. 
Figure 13(a) shows the frequencies which can be ex
cited for various values of A and /3. A separate curve 
has been plotted for 7 as a function of ($ for each of 
several values of A. The value 7 = l / a = 1 8 3 7 corre
sponds to a resonance between the frequency w* of the 
excited wave and the electron gyrofrequency Oe. Figure 
13(b) has been drawn in order to show more clearly 
the behavior of the curves in Fig. 13(a) for small 
frequencies. 

The set of curves shown in Figs. 13(a) and (b) corre
spond to the values of A from A = 1 to A = 103. These 
curves have two common points. One of these is repre
sented by 0 = 0, 7 = 1/a, and the other by 0 = 1 , 7 = 0 . 

In order to point out the qualitative differences be
tween the curves in Figs. 13(a) and (b) and those of 
Fig. 6, one can choose a particular numerical value for 
A and examine the relationship between 7 and 0. 
Assume, for instance, that A = 10 and consider the cor
responding graph shown in Figs. 13(a) and (b). When 
0 is very small, the corresponding values of F shown in 
this graph are in the neighborhood of 7 = 1/a, There
fore, for A — 10, a very slowly moving ion beam excites 
frequencies which are close to the electron gyro
frequency. Consider now the values of /3 within the 
range 0 </3 <OFh where OFx—0.25. There is a one to 
one relationship between 0 and F within this range, 

i.e., for each value of 0 there is only one frequency co* 
excited by the beam. One can also note a very slight 
decrease in F (or wO for increasing values of /3. There
fore, it can be stated that within the range 0 <j3 <OFh 

the beam excites only the waves for which «*~{2«. When 
0 reaches the value 0=OFi and, furthermore, when 0 
exceeds the value p=OFh a significant qualitative 
change can be observed in the behavior of the plasma-
beam system. Thus when (3=OFh the beam is capable 
of exciting simultaneously two different waves having 
two different frequencies. One of these has a value 
o>^Oe and the other a value a>=05i. When /3>OFi, 
the beam is capable of exciting simultaneously three 
different waves having three different frequencies. One 
of these frequencies is in the neighborhood of the elec
tron gyrofrequency and the other two are generally 
considerably below the electron gyrofrequency. If the 
other condition is satisfied, i.e., A^>1, one obtains one 
or sometimes two hydromagnetic waves. Thus, when 
/3 = OF 2=0.3, the two low-frequency hydromagnetic 
waves are represented by Y=OB2

f and by Y=OB2\ 
and the high-frequency waves are represented by 
Y=OB2'". If a larger value of 13 such as 0=OF 3 =0 .6 
is considered, then one of the two low frequencies has 
an increased value and the other has a decreased value. 
These correspond to Y=OBz' and Y=OBz". The three 
excited waves occur simultaneously for all values of 0 
comprised within the range OF\ <0 <OFi where OF4 

^ 0 . 9 1 . For 0 exceeding the value 0 = OF4, another 
qualitative change in the behavior of the plasma-beam 
system is observed. Instead of three excited waves there 
is only one, and the excited wave is hydromagnetic. 
Thus for 0=OF 6 , the frequency of the hydromagnetic 
wave is represented by 7=OJ35 ' . 

Similar considerations can be applied to other graphs 
corresponding to other values of A. Each of these 
graphs is characterized by two threshold values for the 
beam velocity 0 : the lower threshold f3i and the upper 
threshold ffu. Thus for .4 = 10, one has fii — OFi and 
pu=OFi. These threshold values define three different 
ranges for the beam velocity 0 : the lower, the inter
mediate, and the upper range. The lower range corre
sponds to 0 <0i. In this range the ion beam excites one 
wave only. This wave has a relatively high frequency 
which is often close to the electron gyrofrequency. In 
the intermediate range covering the values (3i </3 </?w, 
the beam excites three waves. In the upper range for 
which (3>f3u the beam excites a single wave which is 
hydromagnetic. 

Figure 14 represents the graph of Ni [as given by 
(2-15)] as a function of 0 for each of several fixed values 
of A, Figure 14 corresponds to an ion beam and is 
analogous to Fig. 7 corresponding to an electron beam. 

I t has been previously noted that for a given A, the 
graphs of Fig. 13(a) and (b) may yield three values of 
7 for a single beam velocity #. Each of these values of 
7 represents an excited frequency which is characterized 
by the corresponding value of Ari. Therefore, a similar 
situation is obtained in the representation of Fig. 14, 
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i.e., the graph of Fig. 14 corresponding to the given 
value of A yields three values of A7i for the same beam 
velocity. Therefore, a one to one correspondence needs 
to be established between the three values of Y ob
tained from Figs. 13(a) and (b) and the three values 
of A7i obtained from Fig. 14 (assuming that A and P 
are the same). A comparison of Fig. 14 with Figs. 13(a) 
and (b) shows that points toward the top of the curves 
in Fig. 14 represent values of Ni which correspond to 
points toward the bottom of the curves in Figs. 13(a) 
and (b). 

In order to illustrate the above relationship, consider 
again the value A = 10. If P is less than OF\, then N\ 
is less than 10~5. This value for N\ is relatively small 
and it has not been represented in Fig. 14. If p = OFh 

then the frequency Y=OBi in Fig. 13(b) would yield 
in Fig. 14 the value OC\ for N\. For p=OF%, the values 
OCs, OC%", and OCz" for Ni correspond, respectively, 
to the frequencies OBz, OBz", and OBz'". As P increases 
toward the value OF4, the two values OC%" and OC%" 
approach the value OC4 which is the value of Ni corre
sponding to the frequency OB4 on Fig. 13(a). 

Thus it can be seen that N\ increases as the frequency 
Y represented in Figs. 13(a) and (b) decreases. 

I t should be noted, however, that higher values of A7i 
place more stringent conditions on the permissible 
values of a since the condition <r1,2<&l/Ni must be 
satisfied. 

IV. Graphical Representation of the 
Dispersion Equation 

According to Sturrock,20 one can ascertain from the 
graphical representation of the dispersion equation in 
the 00-k plane whether an instability is convective or 
nonconvective. In a convective instability a disturbance 
increases as it is carried along the system, and it remains 

FIG. 16. "oo-k" diagram for a stationary plasma. 

20 P. A. Sturrock, Phys. Rev. 112, 1488 (1958). See also addi
tional remarks in Jacob Neufeld and Harvel Wright, Phys. Rev. 
124, 3-4 (1961). 

finite at each point. In a nonconvective instability a 
disturbance which originated in a limited region of space 
at any instance of time grows indefinitely for / —* QO in 
this region. 

In investigating the plasma-beam instabilities it 
may be useful to represent the dispersion equation of a 
stationary plasma in the form of a "u-k" diagram and 
then ascertain how the character of such a diagram is 
modified by the presence of a beam. Consider in that 
connection the "u-k" diagram of Fig. 16. This diagram 
represents the dispersion equation F(<a,k) = 0 where F 
is given by (1-5), and it describes, therefore, the be
havior of the medium in the absence of a beam. One 
can observe that for any real value of k there are four 
real values of w which satisfy the equation F(oo,k) = 0. 

Figure 17 represents the "u-k" diagram resulting 
from an interaction of an electron beam with a sta
tionary plasma, and Figs. 18(a), (b), and (c) illustrate 
the interaction of an ion beam with a stationary plasma. 
I t is noted again that Figs. 16 through 18(c) have not 
been drawn to scale in order to show more clearly the 
qualitative behavior of the functions represented by the 
corresponding graphs. 

1. Instability Produced by an Electron Beam 

The presence of an electron beam gives rise to an 
additional term in the dispersion equation. This equa
tion is given by <£(oo,&) = 0 in (1-4). The term 

aa>2(l-p2)1/2(w-ckp) 
(4-1) 

a>-ckp-tie(l-p
2)m 

results from the presence of the beam. If a is very small, 
the only portions of the graph in Fig. 15 which will be 
appreciably affected are in the neighborhood of the line 
w=ckp+Q€(l-p

2)1/2. The "w-ife" diagram representing 
the dispersion equation <j>(w,k) = 0 is given in Fig. 16. 

The rectangle labeled R in the third quadrant of 
Fig. 16 represents a region of convective instability 

FIG. 17. "a>-&" diagram for an electron beam interacting 
with a stationary plasma. 
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(i.e., a region in which w is complex for real k and k is 
complex for real co). 

The frequency range BiB2 represented in this region 
depends on the parameters of the system. However, in 

FIG. 18. (a) "aj-k" diagram for an ion beam interacting with a 
stationary plasma. (The velocity of the beam is in the lower 
range.) (b) "u-k" diagram for an ion beam interacting with a 
stationary plasma. (The velocity of the beam is in the inter
mediate range.) (c) "w-&" diagram for an ion beam interacting 
with a stationary plasma. (The velocity of the beam is in the 
upper range.) 

agreement with previous discussions, the frequencies 
w comprised in this range must be negative and satisfy 
the relationship |co| <12;. 

2. Instabilities Produced by an Ion Beam 

The presence of an ion beam introduces a term in the 
dispersion equation F(o),k) = 0 which is different from 
the one introduced by an electron beam. The dispersion 
equation in this case becomes #i(co,&) = 0, as given by 
(2-1) where the term 

(4-2) 
o>~ckp+tii(l-l32)m 

is introduced by the beam. Again, if a is very small, 
the graph in Fig. IS will be appreciably disturbed only 
in the neighborhood of the line co=c&/3—0*(1—/32)1/2. 
The diagrams for this case are given in Figs. 18(a), (b), 
and (c). The instabilities occur in the rectangular re
gions in the first quadrant labeled Ri through R5. It 
can be readily seen that these instabilities are convective. 

Comparing Figs. 13(a) and (b) with Figs. 18(a), (b), 
and (c), one can see more clearly the relationship be
tween the "co-&" diagrams and the previous discussions. 
Consider in that connection the instabilities produced 
by an ion beam in a stationary plasma for which A = 10. 
Therefore, one refers to the appropriate graph in Figs. 
13(a) and (b) and compares the relationship between ft 
and Y as indicated by this graph with the instabilities 
shown in Figs. 18(a), (b), and (c). Figure 18(a) repre
sents an instability produced by an ion beam when its 
velocity /3 is in the lower range, i.e., when fi <OF\. In 
such case the instability located in the neighborhood of 
the region R\ has a frequency which is very close to the 
electron gyrofrequency. Assume now that ]S increases 
and enters into the intermediate range for which OF\ 
<P<OF^ In such case the slope of the line u=ckl3 
—Q»(l — P2)112 increases and at the same time the line 
moves upward [(1—/32)1/2 decreases so that —12»(1 —/32)1/2 

increases]. The "«-fe" diagram is then represented by 
Fig. 18(b) which shows three instabilities in the neigh
borhood of the regions R2, R3, and R4. One of these 
instabilities, in the neighborhood of the region R2, has 
a frequency which is close to the electron gyrofrequency. 
Another instability in the neighborhood of the region 
R4 represents a hydromagnetic wave. When the ve
locity of the ion beam increases further and enters the 
upper range for which $>OF^ one obtains a diagram 
as shown in Fig. 18(c). In this range there is only one 
instability located in the region Rs. This instability 
represents a growing hydromagnetic wave. 

a The authors express their acknowledgment to the 
a ORNL Mathematics Panel and particularly to Dr. 

H. P. Carter and D. C. Ramsey for assistance in ob-
| taining the graphical representations of Figs. 6, 7,13(a), 

(b), and 14 through 18(c). 
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